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a b s t r a c t 

This paper presents a study of graph partitioning schemes for parallel graph community 

detection on distributed memory machines. We investigate the relationship between graph 

structure and parallel clustering effectiveness, and develop a heuristic partitioning algo- 

rithm suitable for modularity-based algorithms. We demonstrate the accuracy and scala- 

bility of our approach using several real-world large graph datasets compared with state- 

of-the-art parallel algorithms on the Cray XK7 supercomputer at Oak Ridge National Lab- 

oratory. Given the ubiquitous graph model, we expect this high-performance solution will 

help lead to new insights in numerous fields. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Community detection, also named as graph clustering, is a powerful technique for researchers to explore hidden pat-

terns existing in graphs. However, it is still an open problem to design a scalable and accurate parallel community de-

tection algorithm to tackle large graphs using a parallel machine with distributed memory. This is mainly due to the

challenges in graph partitioning. First, traditional graph partitioning schemes cannot well preserve the global structure

information of a graph on a processor, which can lower the cluster quality of local community detection and impair

the accuracy of final aggregated results. Second, for real-world graphs (in particular scale-free graphs), it is difficult to

create a balanced edge partitioning. Traditional 1D partitioning schemes often assign all the incident edges of one ver-

tex to one processor, which can incur severe workload imbalance among processors and impair the scalability of par-

allel community detection. On the other hand, 2D partitioning can greatly improve the partition balance, which how-

ever can be unscalable for sparse graphs. In this case, each partition can have fewer edges than vertices, and thus is

hyper-sparse [1] . 

In this paper, we present an experimental study of a simple graph partitioning scheme [2] designed to boost the accu-

racy and the scalability of parallel community detection in a typical high-performance computing environment. The scheme

considers graph structure information to improve the quality of clustering, and uses a new heuristic algorithm to achieve

balanced workload among processors. We preformed our tests using several real-world large graphs on the Cray XK7 su-

percomputer Titan at Oak Ridge National Laboratory (ORNL). The experimental study shows that the new graph partitioning

scheme can achieve an improved accuracy of clustering that is close to the result generated by the sequential Louvain algo-

rithm, and scale up to 16,384 cores of parallel community detection. 
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Fig. 1. The major steps of our parallel community detection approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Background 

2.1. Sequential modularity-based community detection 

Compared to many other sequential algorithms, modularity-based algorithms are characterized with a nearly linear time

complexity and achieve a comparably higher quality of community detection. Newman and Girvan [3] first introduced the

modularity measurement to quantify the quality of graph clustering, which laid the foundation of the modularity based

clustering algorithms. Afterwards, Clauset et al. [4] proposed an agglomerative graph clustering algorithm (also known as

Clauset–Newman–Moore algorithm, CNM for short), which merged the vertices achieving the global maximum modularity 

value. Blondel et al. [5] proposed a heuristic method, known as the Louvain method, which can achieve a better result with

a lower time complexity. 

Although there is no strict definition on community or cluster of a graph, one commonly accepted concept is that a graph

is partitioned into sub-groups (communities or clusters) of vertices who have dense intra-connections, but sparse inter-

connections [6] . Correspondingly, modularity , Q , is a measurement used to quantify the quality of communities detected in

a graph [4] , which can be formulated as: 

Q = 

1 
2 m 

∑ 

v w 

[ A v w 

− d v d w 
2 m 

] δ(C v , C w 

) , (1) 

where m is the number of edges in the graph, v and w are two vertices, and d v and d w 

are the degrees of v and w,

respectively. A v w 

represents the connectivity between v and w, which is 1 when v and w are connected by an edge and is

0 otherwise. C v and C w 

are the communities that contain v and w, respectively. The value of δ function is 1 when C v and

C w 

is the same community; otherwise it is 0. The intuition of Eq. (1) is that if the modularity value is high, there are many

edges inside communities but only a few between different communities, indicating a high quality of community detection.

Modularity gain , δQ , is the gain in modularity obtained by moving an isolated node v i into a community C [5] , which can

be computed as: 

δQ = 
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] 

, (2) 

where �in is the total edge weight inside C , k v i ,in is the sum of edge weight from a vertex v i to C , �tot is the total weight

of edges incident to vertices belong to C , k v i is the total weight of edges incident to v i , and m is the sum of the weights of

all edges in the graph. 

The Louvain algorithm is designed based on the modularity measure ( Eq. (1) ). It is a hierarchical agglomerative clustering

method in that initially each vertex is regarded as a unique community, and then communities are merged iteratively. In

each iteration, multiple communities are merged into a new community to maximize the modularity gain ( Eq. (2) ). This

process goes on until there is no modularity gain among new communities. 

2.2. Parallel community detection 

Although there have been some effort s in parallelizing community detection for large scale graphs based on shared mem-

ory architecture [7,8] , these techniques cannot be directly applied on distributed memory machines. There is comparably

limited work of parallel graph clustering on distributed memory machines. Zhang et al. [9] proposed a parallel hierarchical

graph clustering method that dynamically constructed the network topology. Soman et al. [10] built a parallel label propaga-

tion algorithm (LPA) graph clustering on GPUs cluster that was limited to a marginal size graph. Cheong et al. [11] presented

a GPU-based Louvain algorithm using 1D partitioning and divide-and-conquer strategy. However, their accuracy of cluster-

ing result on multiple GPUs was relatively lower than the sequential Louvain algorithm. Que et al. [12] implemented a

distributed Louvain algorithm that also used 1D partitioning. 

3. Our parallel community detection approach 

Fig. 1 shows the basic steps of our parallel community detection approach [2] , which follows the conventional divide-

and-conquer strategy. Cheong et al. stated that this strategy works for the parallel Louvain algorithm because the sub-graphs

generated in the dividing stage can be efficiently merged in the reduction stage, and the size of the reduced graph is several
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Fig. 2. An input graph is partitioned into two sub-graphs for two processors (PE 0 and PE 1 ) using the 1D partitioning without ghost vertices (left) and 

with ghost vertices (right). The sub-graphs are denoted in red or black, and the vertices circled in green are the ghost vertices. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Datasets used in our evaluation. 

Name Description #Vertices #Edges 

uk-2005 [14] the .uk domain 39 .46M 936 .4M 

webbase-2001 [15] a crawl graph by WebBase 118 .14M 1 .01B 

Orkut [15] a Google’s social networking 3 .07M 225 .53M 

LiveJournal [15] a virtual-community social site 5 .20M 76 .94M 

YouTube [16] Youtube friendship network 11 .34M 29 .87M 

DBLP [16] a co-authorship network from DBLP 0 .31M 1 .04M 

Amazon [16] frequently co-purchased products 0 .33M 0 .92M 

LFR Graph [17] LFR graph generator with build-in communities 0 .1M 1 .6M 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

order less than the original one. In the reduction stage, the sequential Louvain algorithm will be applied on the reduced

graph on the root processor, and the convergence of the algorithm is assured [11] . 

In our approach, we first partition and distribute a single large graph among the processors using a simple 1D parti-

tioning similar to Cheong et al.’s method [11] , and each processor is assigned with a sub-graph. Then we exchange ghost

vertices among the processors, and add ghost vertices into the local sub-graph of a processor. In this way, we can preserve

the local graph structure information more integrated compared to the existing methods. 

After each processor builds a sub-graph consisting of both the local and ghost vertices, it conducts local clustering that is

similar to the sequential Louvain algorithm on the sub-graph. The difference is that, in our local clustering, we assume the

ghost vertices as read-only vertices. This means that we can change the communities of local vertices into the communities

of other local vertices or ghost vertices, but we always keep the communities unchanged for ghost vertices. In this way, we

use the degree information of ghost vertices to enhance the structure information of a sub-graph, and increase the local

clustering accuracy. The communities of ghost vertices are only changed on their host processors. In our local clustering,

only the modularity gain of local vertices is calculated; but for the neighbors of local vertices, the ghost vertices are also

included. 

After each processor generating its local communities, the local communities are merged to form a new global graph,

and a local clustering is conducted on the root processor to obtain the final clustering result. 

4. Graph partitioning scheme and experimental results 

Data partitioning is the key to the scalability of a parallel algorithm [13] . We also believe that a good data partitioning

can influence the accuracy of a parallel algorithm. However, these two issues have not been extensively and holistically

studied for parallel community detection. The salient feature of our approach is a new parallel graph partitioning scheme to

enhance both the accuracy and scalability of parallel community detection. The existing algorithms often use a simple 1D

partitioning that ignores ghost vertices residing in different sub-graphs. Alternatively, our method stores the ghost vertices

for each sub-graph, and uses the degrees of the ghost vertices in the input graph. Fig. 2 illustrates the difference between

these two schemes. 

We have experimentally studied our graph partitioning scheme. In particular, we have compared our method to Cheong’s

method [11] because their method achieves one of the best clustering results among the existing distributed parallel algo-

rithms. In our study, we used 7 real world input graphs and 1 synthetic graph, which are summarized in Table 1 . Compared

with the datasets used in Cheong’s work, we used the full extent of these graphs. We have conducted our experiments on

the Titan supercomputer at ORNL. The system contains 18,688 nodes with Gemini interconnect. Each node has 16-core AMD

Opteron CPUs with 32 GB of RAM. Our parallel program is entirely written in C++ with MPI for parallelism. In order to

compare with Cheong’s work, we have implemented an MPI version of their algorithm that can process the full extent of

each large graph in Table 1 . We refer this implementation as Cheong’s method in the following discussion. 
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Fig. 3. Comparison of degree distribution using different datasets and different numbers of cores. In each plot, the blue curve corresponds to the degree 

distribution of the original graph; and the red and green curves correspond to the average degree distributions of sub-graphs with ghost vertices and 

without ghost vertices, respectively. We can see that the degree distribution of sub-graphs with ghost vertices is more similar to that of original graph. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Relationship between graph partitioning and clustering accuracy 

In our previous work [2] , we derived a lemma that shows clustering accuracy decreases without ghost vertices: 

Lemma 1. For a sub-graph, a local vertex can be clustered into a wrong community without considering ghost vertices. 

This lemma shows that an involvement of ghost vertices is a necessity for preserving graph structure on each proces-

sor and for improving clustering accuracy. We have verified this by evaluating the degree distribution and the community

detection accuracy in our experimental results. 

4.1.1. Experimental evaluation of degree distribution 

According to previous research [18] , we know that if the degree distribution of each sub-graph is preserved, then

the other graph structure properties, such as clustering coefficient, can be preserved as well. Besides, we note that both

Eqs. (1) and ( 2 ) depend on the degree information. Therefore, we have an intuition that degree distribution is a critical graph

structure property related to the quality of graph clustering. 

We show the qualitative and quantitative comparisons of degree distribution for all datasets between the conventional

1D graph partitioning without considering ghost vertices and our graph partitioning with considering ghost vertices. Fig. 3

shows a comparison of degree distribution using different datasets and different numbers of cores. We observe that the

average degree distribution with ghost vertices is more similar to the original graph degree distribution. We can find that if

we do not consider ghost vertices, there is a degree loss for high degree vertices in sub-graphs, which is the main difference

between the conventional partitioning and our partitioning. We also observe that the degree distributions of these two

partitioning schemes are nearly identical for the uk-2005 and webbase-2001 datasets. This is because these two datasets are

very large graphs with respect to the core number. Compared to the other datasets, these two datasets have more vertices

with the degrees larger than 10 4 . For these vertices, the average degree values are similar between these two partitioning

schemes. Thus, even ignoring ghost vertices, the sub-graph on each core does not lose much structure information. For the

other datasets, there are noticeable discrepancies between the degree distributions conveyed by the blue and green curves. 

We further used the Kolmogorov–Smirnov test to quantitatively compare the degree distribution between 1D partition-

ing without considering ghost vertices and our partitioning with considering ghost vertices. The Kolmogorov–Smirnov test

[19] is also called D-statistic , relying on the fact that the value of the sample cumulative density function is asymptotically

normally distributed. This is a goodness-of-fit test for any statistical distribution. In order to apply the Komologrov–Smirnov

test, we need to first calculate the cumulative frequency of the observations as a function of class. We then calculate the

cumulative frequency of the ground truth. The greatest discrepancy between the observed and expected cumulative frequen-

cies is called D-statistic. A lower discrepancy means the distribution of sample is more accordance with that of the ground

truth. In our case, we can easily calculate the degree distribution of original graph, and then treat the average degree dis-

tribution of sub-graph on each processor as a sample. In this way, we can calculate the greatest discrepancy between two

degree distributions. 
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Table 2 shows the D-statistic comparison between the partitioning without considering ghost vertices (the “no ghost”

columns) and our partitioning (the “ghost” columns) using different numbers of cores. 1 We can clearly see that our method

can generate a lower value of D-statistic for each dataset over different core numbers, which means our partitioning can

generate an average degree distribution more consistent with that of the original graph. This quantitatively verifies that our

method can well preserve graph structure information on a sub-graph. 

4.1.2. Experimental evaluation of community detection accuracy 

The degree distribution evaluation shows that the sub-graph on each processor well preserves the structure information

of the original graph using our method, which theoretically can lead to superior clustering quality according to Lemma 1 . In

order to determine the accuracy of the communities detected by our algorithm, we have compared the modularity among

the sequential Louvain algorithm, Cheong’s method and our parallel algorithm. Besides, we have considered other measure-

ments for similarity metrics between our parallel algorithm and the sequential Louvain algorithm, Finally, we have also

compared the community size distribution between our algorithm and the sequential Louvain algorithm. 

Modularity comparison. Modularity is designed to measure the quality of graph clustering. A higher modularity means

graphs have dense intra-community connections but sparse inter-community connections. We compared the modularity

among the sequential Louvain algorithm, Cheong’s method, and our method. 

Table 3 shows the result of modularity comparison. 2 The “difference” columns show the relative differences with respect

to the Louvain algorithm. A positive (negative) difference value means a higher (lower) modularity, implying a better (worse)

clustering quality. We can observe that the modularity values of our clustering results are closer to the Louvain algorithm

and some of them are even higher than that. This shows that our method can achieve more accurate clustering results by

considering both local vertices and ghost vertices. In Cheong’s method, inaccuracy is introduced as the ghost vertices are

ignored. Our method can effectively improve the accuracy and make the modularity values close to or even higher than

those of the sequential Louvain algorithm. 

We note that for the LiveJournal and Orkut datasets, the modularity values of our method are noticeably higher than

Cheong’s method. These two datasets correspond to dense social networks where the average degree of vertices is signif-

icantly higher than the other graphs, as indicated by the high edge/vertex ratios in Table 1 . This shows that the structure

information, particularly degree distribution, is critical to dense graphs. Our method can well preserve graph structure in-

formation by appropriately involving ghost vertices. 

We also note that our method can achieve slightly higher results than the sequential Louvain algorithm. This is mainly

because of the involvement of ghost vertices in our method. On each processor, our method does not merge ghost ver-

tices with local vertices into one community, but treats each ghost vertex as one independent community. In this way, our

method can not only reduce the errors from local clustering, but also detect small clusters in a large graph, which is hard

to resolve in the sequential Louvain algorithm. 

Community structure comparison. We also considered several metrics to compare the similarity of the resulting com-

munity structure between the sequential Louvain algorithm and our parallel algorithm. The metrics include Normalized

Mutual Information(NMI), F-measure, Normalized Van Dongen Metic (NVD), Rand Index (RI), Adjusted Rand Index (ARI) and

Jaccard Index(JI). In general, a higher similarity corresponds to a lower value for NVD and higher values for the rest metrics

[20] . Table 4 shows that our parallel algorithm has achieved the community detection results similar to the ones of the

sequential algorithm. In particular, the most widely used measure NMI is close to 1. 

Community size distribution. In order to provide a further insight of community detection between our algorithm and

the sequential algorithm, we examined the detected community size distribution. Fig. 4 shows the community size distribu-

tion comparison on all datasets. We can find that the distribution of community size of our algorithm is similar to those of

the sequential algorithm. This states that our parallel algorithm can guarantee the correctness of the Louvain algorithm and

achieve similar community detection results. 

4.2. Relationship between graph partitioning and clustering scalability 

In the Louvain algorithm, to calculate the maximum modularity gain for each vertex v , each neighbor of vertex v needs

to be checked, which states the overall complexity of the algorithm is proportional to the total degree of all vertices of

a graph. Using the simplified 1D partitioning without ghost vertices as Cheong et al. [11] can achieve a nearly balanced

workload partition, because each sub-graph has an approximately equal summation of its local vertex degrees. However, the

involvement of ghost vertices increases the complexity in partitioning of a graph, because a local vertex may have a large

degree and connect to many ghost vertices. 

This issue seems inevitable given that a large graph with a scale-free structure may always have a few vertices with very

high degrees. We have derived the following lemma [2] to cope with this issue according to Eq. (2) : 
1 For each dataset, we chose the range of core numbers according to the graph size. 
2 We further developed a heuristic partitioning method to improve the scalability of our method. The column of our method with heuristic partitioning 

will be discussed in Section 4.2 . 
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Table 2 

D-statistics comparison. 

Graph Core = 32 Core = 64 Core = 128 Core = 256 Core = 512 Core = 1024 Core = 2048 Core = 4096 Core = 8192 Core = 16384 

no ghost ghost no ghost ghost no ghost ghost no ghost ghost no ghost ghost no ghost ghost no ghost ghost no ghost ghost no ghost ghost no ghost ghost 

uk-2005 0 .059 0 .004 0 .065 0 .007 0 .072 0 .012 0 .088 0 .027 0 .110 0 .045 0 .130 0 .060 

webbase-2001 0 .026 0 .002 0 .027 0 .040 0 .029 0 .006 0 .032 0 .008 0 .037 0 .012 0 .045 0 .016 

Orkut 0 .599 0 .005 0 .648 0 .009 0 .682 0 .016 0 .707 0 .024 0 .727 0 .036 0 .747 0 .054 0 .768 0 .084 0 .794 0 .130 

LiveJournal 0 .435 0 .002 0 .463 0 .004 0 .484 0 .006 0 .501 0 .010 0 .516 0 .016 0 .536 0 .023 0 .547 0 .036 

YouTube 0 .796 0 .005 0 .834 0 .007 0 .862 0 .010 0 .879 0 .014 0 .888 0 .020 0 .897 0 .030 0 .900 0 .040 

DBLP 0 .425 0 .004 0 .466 0 .006 0 .495 0 .010 0 .512 0 .017 

Amazon 0 .543 0 .002 0 .551 0 .004 0 .569 0 .005 0 .581 0 .010 

LFR 0 .042 0 .009 0 .082 0 .014 0 .123 0 .023 0 .256 0 .054 
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Table 3 

Modularity comparison. 

Graph Louvain Cheong’s method Our method Our method heuristic partitioning 

Modularity Difference Modularity Difference Modularity Difference 

uk-2005 0 .979 0 .979 0 .00% 0 .980 0 .10% 0 .980 0 .10% 

webbase-2001 0 .984 0 .984 0 .00% 0 .985 0 .11% 0 .985 0 .11% 

Orkut 0 .661 0 .600 −9 .22% 0 .661 0 .00% 0 .660 −0 .30% 

LiveJournal 0 .734 0 .704 −4 .08% 0 .749 2 .04% 0 .749 2 .04% 

YouTube 0 .715 0 .709 −0 .80% 0 .719 0 .56% 0 .715 0 .00% 

DBLP 0 .820 0 .800 −2 .44% 0 .818 −0 .24% 0 .816 −0 .49% 

Amazon 0 .926 0 .920 −0 .65% 0 .926 0 .00% 0 .925 −0 .11% 

LFR 0 .608 0 .604 −0 .66% 0 .608 0 .00% 0 .608 0 .00% 

Table 4 

Community structure comparison. 

Dataset NMI F-measure NVD RI ARI JI 

Amazon 0 .9738 0 .8133 0 .1480 0 .9989 0 .6675 0 .5123 

LFR Graph 0 .9933 0 .9144 0 .0399 0 .9999 0 .9425 0 .8611 

Fig. 4. Comparison of community size distribution using different datasets between our parallel algorithm and the sequential algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

Lemma 2. Given an sub-graph on a processor p i , we have a set of ghost vertices v g 1 , v g 2 , ..., v g n , which only connect the same

local vertex v l . Assume v g a has the minimal degree among the ghost vertices, then in the final clustering result of this sub-graph,

there exists a ghost vertex v g b where the community of v l is not equal to the community of v g b and v g b � = v g a . 

Lemma 2 allows us to prune a considerable amount of ghost vertices for one sub-graph. Based on this lemma, we have

developed a heuristic partitioning algorithm [2] to partition a graph into a set of sub-graphs, and each sub-graph is associ-

ated with an approximately equal amount of workload. The total complexity of our heuristic algorithm is O ( | E | log | E | ), where

| E | is the total number of edges of the input graph. Table 3 shows the modularity values of our method with heuristic par-

titioning, where we can see that the modularity values are unchanged or slightly decreased. We have further verified that

the application of Lemma 2 can improve parallel scalability and workload balancing of our method. 

4.2.1. Experimental evaluation of parallel scalability 

Fig. 5 shows the detailed performance results of graph clustering using our method with heuristic partitioning, our

method without heuristic partitioning, and Cheong’s method on different datasets. In Fig. 5 , the running time of each test is

the maximum local clustering time among all processors. 

We first compared our method with and without heuristic partitioning, and observed that heuristic partitioning can help

our method achieve a more scalable local clustering performance. For the Amazon and DBLP datasets that are comparably

small, we processed them using up to 256 cores, and our method can achieve nearly 2 × speedup if enabling heuristic

partitioning. For the LiveJournal, Youtube and Orkut datasets, heuristic partitioning can help our method achieve nearly 4 ×
speedup. Even when using 4096 cores for Orkut, our method can still have 2 × speedup using heuristic partitioning. 
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Fig. 5. Scalability study using different datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the two large-scale datasets uk-2005 and webbase-2001, there is a noticeable difference between the running times

without heuristic partitioning on 1024 cores. Through a comparison of degree distribution of these two datasets, we found

that although uk-2005 has a smaller vertex number and edge number than webbase-2001, the highest vertex degree in

uk-2005 (more than 10 6 ) is much larger than that in webbase-2001 (less than 10 6 ), and the number of high degree vertices

in uk-2005 is also larger than that in webbase-2001. This means that without heuristic partitioning, it is easy to incur a

highly imbalanced workload among processors. For the webbase-2001 dataset, the difference between our method with and

without heuristic partitioning is less obvious. This is because this dataset has a less amount of high degree vertices, and our

method without heuristic partitioning can also achieve a relatively balanced workload assignment. 

We also compared our method with heuristic partitioning and Cheong’s method. We observed several interesting phe-

nomena. From our initial inference, Cheong’s method ignores ghost vertices and can achieve a relatively balanced workload

among processors, and correspondingly a higher scalability. This has been illustrated by the results of the Orkut, webbase-

2001 and LFR datasets in Fig. 5 . However, we can find that for the Amazon, DBLP, LiveJournal and Youtube datasets, the

running time of Cheong’s method increases with more cores used. This shows that only reducing the edges incident to the

ghost vertices cannot make the parallel Louvain algorithm scalable. We think this is because the Louvain algorithm detects

communities based on graph structure, and reducing the edges incident to the ghost vertices can make the algorithm use

more iterations to converge, thereby increasing the running time. On the other hand, the running time of our method de-

creases with the increasing number of cores. Thus, for the Amazon, DBLP, LiveJournal, Youtube and uk-2005 datasets, our

method is more scalable than Cheong’s method. We think the reason is that our partitioning can well preserve global graph

structure information on sub-graphs ( Section 4.1 ), and our local clustering can converge using a much fewer number of

iterations than Cheong’s method that neglects ghost vertices. The comparison shows that our method can achieve better

scalability and more accurate results on these datasets. 

4.2.2. Experimental evaluation of workload balancing 

To explore more details about workload on each core, we have plotted the running time of each core for each dataset

partitioned on the different numbers of cores, as shown in Fig. 6 . We can see that for the Amazon, LFR and uk-2005 datasets,

our heuristic partitioning method can make each core have a balanced workload than the method without heuristic parti-

tioning. Especially for the uk-2005 dataset, our heuristic partitioning can effectively decrease the maximum local clustering

time, while, without heuristic partitioning, an extremely high workload is observed on one particular core. For the DBLP,

LiveJournal and YouTube datasets, our partitioning method makes each core have similar workload while the conventional

method makes each core have highly varied workload, and thus our local clustering with heuristic partitioning can achieve

a much shorter running time. For the Orkut and webbase-2001 datasets, although most cores have higher workload with

heuristic partitioning, we note that one or two cores in 1D partitioning without heuristic strategy can have much higher

local computing time, while our heuristic partitioning has distributed this heavy load to all of the cores. 

5. Conclusion 

Our graph partitioning scheme directly accounts for graph structure through ghost vertices, and leads to scalable and

higher-quality parallel graph clustering results with large-scale graphs on massively parallel machines. Our evaluation study,

which has used up to 16,384 cores of Titan at ORNL and more than 1 billion edges of graphs, demonstrates convincing
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Fig. 6. Comparison of workload on each core using different datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

results, and reveals the relationship between graph partitioning schemes and parallel clustering quality and scalability. Al-

though this paper presents our experimental study of graph partitioning schemes for parallel community detection, the

accuracy and scalability challenges are common in the context of other types of large-scale graph applications. 
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